3 research outputs found

    Coalescing disparate data sources for the geospatial prediction of mosquito abundance, using Brazil as a motivating case study

    Get PDF
    One of the barriers to performing geospatial surveillance of mosquito occupancy or infestation anywhere in the world is the paucity of primary entomologic survey data geolocated at a residential property level and matched to important risk factor information (e.g., anthropogenic, environmental, and climate) that enables the spatial risk prediction of mosquito occupancy or infestation. Such data are invaluable pieces of information for academics, policy makers, and public health program managers operating in low-resource settings in Africa, Latin America, and Southeast Asia, where mosquitoes are typically endemic. The reality is that such data remain elusive in these low-resource settings and, where available, high-quality data that include both individual and spatial characteristics to inform the geospatial description and risk patterning of infestation remain rare. There are many online sources of open-source spatial data that are reliable and can be used to address such data paucity in this context. Therefore, the aims of this article are threefold: (1) to highlight where these reliable open-source data can be acquired and how they can be used as risk factors for making spatial predictions for mosquito occupancy in general; (2) to use Brazil as a case study to demonstrate how these datasets can be combined to predict the presence of arboviruses through the use of ecological niche modeling using the maximum entropy algorithm; and (3) to discuss the benefits of using bespoke applications beyond these open-source online data sources, demonstrating for how they can be the new “gold-standard” approach for gathering primary entomologic survey data. The scope of this article was mainly limited to a Brazilian context because it builds on an existing partnership with academics and stakeholders from environmental surveillance agencies in the states of Pernambuco and Paraiba. The analysis presented in this article was also limited to a specific mosquito species, i.e., Aedes aegypti, due to its endemic status in Brazil

    An Evaluation of the OpenWeatherMap API versus INMET Using Weather Data from Two Brazilian Cities: Recife and Campina Grande

    Get PDF
    Certain weather conditions are inadvertently related to increased population of various mosquitoes. In order to predict the burden of mosquito populations in the Global South, it is imperative to integrate weather-related risk factors into such predictive models. There are a lot of online open-source weather platforms that provide historical, current and future weather forecasts which can be utilised for general predictions, and these electronic sources serve as an alternate option for weather data when physical weather stations are inaccessible (or inactive). Before using data from such online source, it is important to assess the accuracy against some baseline measure. In this paper, we therefore evaluated the accuracy and suitability of weather forecasts of two parameters namely temperature and humidity from the OpenWeatherMap API (an online weather platform) and compared them with actual measurements collected from the Brazilian weather stations (INMET). The evaluation was focused on two Brazilian cites, namely, Recife and Campina Grande. The intention is to prepare an early warning model which will harness data from OpenWeatherMap API for mosquito prediction

    Temporal and Spatiotemporal Arboviruses Forecasting by Machine Learning: A Systematic Review

    Get PDF
    Arboviruses are a group of diseases that are transmitted by an arthropod vector. Since they are part of the Neglected Tropical Diseases that pose several public health challenges for countries around the world. The arboviruses' dynamics are governed by a combination of climatic, environmental, and human mobility factors. Arboviruses prediction models can be a support tool for decision-making by public health agents. In this study, we propose a systematic literature review to identify arboviruses prediction models, as well as models for their transmitter vector dynamics. To carry out this review, we searched reputable scientific bases such as IEE Xplore, PubMed, Science Direct, Springer Link, and Scopus. We search for studies published between the years 2015 and 2020, using a search string. A total of 429 articles were returned, however, after filtering by exclusion and inclusion criteria, 139 were included. Through this systematic review, it was possible to identify the challenges present in the construction of arboviruses prediction models, as well as the existing gap in the construction of spatiotemporal models
    corecore